Units:

$$\begin{split} 1\,\mathrm{m} &= 39.4\,\mathrm{in} = 3.28\,\mathrm{ft} \qquad 1\,\mathrm{mi} = 5280\,\mathrm{ft} \qquad 1\,\mathrm{min} = 60\,\mathrm{s}, \quad 1\,\mathrm{day} = 24\,\mathrm{h} \qquad 1\,\mathrm{rev} = 360^\circ = 2\pi\,\mathrm{rad} \\ 1\,\mathrm{atm} &= 1.013 \times 10^5\,\mathrm{Pa} = 760\,\,\mathrm{torr} = 14.7\,\,\mathrm{psi} \qquad T = \left(\frac{1\,K}{1^\circ\mathrm{C}}\right)T_\mathrm{C} + 273.15\,\mathrm{K} \qquad T_\mathrm{F} = \left(\frac{9\,^\circ\mathrm{F}}{5^\circ\mathrm{C}}\right)T_\mathrm{C} + 32^\circ\mathrm{F} \end{split}$$
Constants:

 $k = 1.38 \times 10^{-23} \,\text{J/K} \quad R = 8.31 \,\text{J/(mol·K)} \quad \text{Avogadro's } \# = 6.02 \,\times 10^{23} \,\text{particles/mol}$

Properties of H₂O:

Density:	$ \rho_{\rm water} = 1000 \ \rm kg/m^3 $	
Specific heat:	$c_{\rm water} = 4187 \ {\rm J/(kg \ K)}$	$c_{\rm ice} = 2220 \ {\rm J/(kg \ K)}$
Heats of transformation:	$L_{\rm vaporization} = 2.256 \times 10^6 {\rm J/kg}$	$L_{\rm fusion} = 3.33 \times 10^5 \mathrm{J/kg}$

Static Fluids:

Density:
$$\rho = \frac{\Delta m}{\Delta V}$$
 Pressure: $p = \frac{\Delta F}{\Delta A}$
Thermodynamics:

.

Linear Expansion:	$\Delta L = L$	$L\alpha\Delta T$	Volume Expa	ansion: $\Delta V =$	$V\beta\Delta T = 3\alpha V\Delta T$
Heat of Warming/Cooli	ng: $Q = mc$	$c\Delta T$	Heat of Tran	sformation: Q	= mL
Work Done \mathbf{by} the Syst	em: $W = \int_{i}^{i}$	$\int p dV$			
First Law:	$\Delta E_{int} =$	= Q - W	$\Delta E_{int} = E_{int}$	$E_{t,f} - E_{int,i}$	$dE_{int} = dQ - dW$
Ideal Gas Law:	pV = nRT =	= NkT		$\frac{pV}{T} = \text{const}$	for n=const
Kinetic Theory:	$p = \frac{nMv_{\rm rms}^2}{3V} =$	$=\frac{\rho v_{\rm rms}^2}{3}$		$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$	$=\sqrt{\frac{3kT}{m}}$
Change in Entropy:	$\Delta S = \int_{i}^{J} \frac{dQ}{T}$	$\frac{2}{7}$ (rever	sible path)	$\Delta S = S_f - S_i$	
Second Law:	$\Delta S \ge 0 \dots ($	(closed syst	em)		
Solids/Liquids:	$\Delta S = \frac{mL}{T}$	(transform	lation)	$\Delta S = mc \ln \frac{T}{T}$	$\frac{f}{f}$ (warming/cooling)
Ideal Gases:	$\Delta S = nR \ln \frac{1}{2}$	$\frac{V_f}{V_i} + nC_V \ln t$	$n \frac{T_f}{T_i}$	1	ı

Molecule	Monoatomic	Diatomic	Polyatomic		
C_V	(3/2)R	(5/2)R	3R	$\gamma = C_p/C_{_V},$	$E_{ m int} = n C_{_V} T$
C_p	(5/2)R	(7/2)R	4R		

Process Type	Const. Quant.	Useful Relations (reversible processes)
Any path		$W = \int p dV, \ \Delta E_{\text{int}} = Q - W = nC_V \Delta T, \ \Delta S = \int dQ/T$
Isochoric	V	$W = 0, Q = nC_V \Delta T$
Isobaric	p	$W = p\Delta V, \ Q = nC_P\Delta T$
Isothermal	T	$W = nRT \ln(V_f/V_i), \ \Delta E_{\text{int}} = 0, \ \Delta S = Q/T$
Cyclic		$Q = W, \Delta E_{\text{int}} = 0, \Delta S = 0$
Adiabatic	$pV^{\gamma}, TV^{\gamma-1}$	$Q = 0, W = -\Delta E_{\text{int}}, \Delta S = 0$

Engines:

1st Law for Eng. and Refrig.: $0 = |Q_H| - |Q_L| - |W|$ Efficiency: $\epsilon = \frac{|W|}{|Q_H|}$ Carnot (ideal) efficiency: $\epsilon_C = 1 - \frac{|Q_L|}{|Q_H|} = 1 - \frac{T_L}{T_H}$

Refrigerator:

Coeff. of performance: $K = \frac{|Q_L|}{|W|}$ Carnot coeff. of performance: $K_C = \frac{|Q_L|}{|Q_H| - |Q_L|} = \frac{T_L}{T_H - T_T}$